If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2-16x+20=0
a = -3; b = -16; c = +20;
Δ = b2-4ac
Δ = -162-4·(-3)·20
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{31}}{2*-3}=\frac{16-4\sqrt{31}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{31}}{2*-3}=\frac{16+4\sqrt{31}}{-6} $
| -6y+5=-19 | | _4x^2+19x+15=0 | | -2v+7=-7v+17 | | 11y=4/12 | | -2v+-7v=2+17 | | (x/6)+7=-11 | | -16x^2+76x-60=0 | | 0.79x+32=1.59x | | 120=5(x-50)+45 | | 9.5=4x+6 | | 120=5(x-50)45 | | x=2.6x(1-x) | | 86=3(w)+3(w)+w+w | | 96=3f | | 30+52.45x=57.45x | | 7x-10+9=125 | | 12a+7=4 | | 2+2(4x-5)=6-4(2x+1) | | (3x-10)+(4x+9)=125 | | 4x(2)-52x+160=0 | | 2(x-3)+85x-22x-5)+2=-10 | | 3(n-8)-1=2n+5 | | 5x^2+16x-56=0 | | 15x-60=30x=420 | | -3y^2+15y-18=0 | | 6(t-4)+7t=2 | | -5/3×x+2/5-1/3×x=0 | | 4(w+1)-7=3(w+1)+w | | -2y+42=-6(y-5) | | 2-z=z/3 | | -87=-8p+-15 | | 3x-9+23-5x=360 |